Xmax analysis using skewness

James Stapleton The Ohio State University Center for Cosmology and Astro-Particle Physics October 12th, 2013

Auger Xmax results

- depth of shower maximum is sensitive to UHECR composition
 - Heitler model, nuclear superposition, etc.
- standard approach: compare data/MC Xmax mean and RMS
 - mean Xmax consistent with protons below $\sim 10^{18.6} \text{ eV}$
 - Xmax trend follows log E (as expected for a pure composition)
 - broken trendline usually taken to indicate a change in mass over energy

Xmax data: interpretation

Intrinsic shower-to-shower fluctuations in depth reduce 'mass resolution'

- we only shows **mean** of Xmax distribution
- Xmax distributed about mean with significant variance
- distributions for different masses overlap
- composition mixtures mean <Xmax> is an average over a composite distribution made of multiple, overlapping pure-mass distributions

Hadronic interactions in air shower further complicate the picture

- MC simulations use hadronic phenomenology instead of perturbative QCD
- BUT phenomenology is extrapolated to energies and momenta at which they cannot be directly tested
- result: large systematic uncertainties on simulated Xmax

Xmax asymmetry and early interactions

- Note: Xmax **mean** and **width** also depend strongly on early cross-section
- BUT these quantities are used to estimate primary UHECR mass
- Mass estimates can easily be confounded by cross-section systematics

Distribution tail

- intrinsic asymmetry in Xmax fluctuations
- due to intrinsic asymmetry in depths of first interaction X₁
- Sensitive to cross-section in X₁!
- Proton-air cross-section measurement
 - use proton-like Xmax data below break energy
 - Auger p-air cross-section measurement

Mass estimations and high-energy hadronic cross-sections

Example: artificially scale cross-sections

- CONEX simulation using QGSJet model
- QGSJet predicts total cross-sections for (p, pi, kaon incident on nucleus)
- apply scaling factor f_{σ} to cross-section
- f_{σ} changes slowly from 1 to 2 between 10¹⁸ eV and 10¹⁹ eV

Could be interpreted as a change in mass!

Why is asymmetry so sensitive to X1?

What can we do about it?

Separate sources of shower-to-shower fluctuations in depth

- all cascade generations have intrinsic fluctuations in depth
- *earlier* fluctuations have greater influence than later fluctuations

Early interactions

- X_1 : exponentially distributed ~ exp(- X_1 /lambda)
 - when measured in COLUMN DENSITY [g/cm²]
- lambda inversely proportional to UHECR-air cross-section

Easiest extension of cascade picture: treat X₁ separately from remaining distance to Xmax

Combine distributions of X₁ and X_H

- we know the distribution of X_1
- we know the distribution of X_H is 'significantly wide'
 - use a normal distribution:
 - **N** (Xmax; mean=eta, std.dev.=tau)
- convolution gives the distribution of $Xmax = X_1 + X_H$
- $f_3(X_{\max};\lambda,\eta,\tau) = \int dX_1' \frac{1}{\lambda} e^{-\frac{X_1'}{\lambda}} \frac{1}{\sqrt{2\pi\tau}} e^{-\frac{1}{2}\left(\frac{X_{\max}-X_1'-\eta}{\tau}\right)^2}$

f_3 shape parameters

- lambda: mean X₁ (interaction length of UHECR in atmosphere)
- eta: mean X_H
- tau: standard deviation of $X_{_{H}}$

Benefits

- f_3 provides a good fit to simulated Xmax and real data
- provides parametric treatment of uncertain cross-sections
- tau absorbs (symmetric) Xmax error systematics
- statistical moments of f_3 can be expressed as functions of shape parameters!

We can separately parameterize cascade development at highest energies (most uncertainty) and lower-energies (better understood)

Earlier cascade interactions

- fewer branches/particles
- depth fluctuations have greater overall effect on depth of Xmax
- occur with the highest energies
- are the most vulnerable to systematics in hadronic phenomenology

Later cascade interactions

- involve MANY branches/particles
- are *most* cascade interactions
- more valid use of Heitler model
- better phenomenological predictions
- asymmetric distance fluctuations are 'averaged out' more efficiently

Reproducing the Xmax distribution

- f_3 describes Xmax well for:
 - energies $10^{18} 10^{19.5}$
 - A = (1, 4, 14, 35, 56)
- f_3 previously discussed for this reason
 - GAP 2009-078, 2010-105, 2010-108, 2011-041, 2011-064, 2012-030, ...?

- another neat property: tau absorbs ulletXmax measurement error
 - (for Gaussian models of Xmax error)

- Gaussians combine
- no integral needed to 'smear' Xmax • distribution for error

$$f_3(X_{\max};\lambda,\eta,\tau) \otimes G(\Delta X_{\max};0,\delta) = f_3(X_{\max};\lambda,\eta,\sqrt{\tau^2+\delta^2})$$

- statistical moments as simple functions of shape parameters
 - invert relationships
 - calculate shape parameters as simple functions of statistical moments
 - forms make their physical meaning clear
- lambda is really just a measure of skewness
- eta: 'X₁-corrected' measure of mean Xmax
- tau: 'X₁ corrected' measure of variance
- these 'corrections' make the mean and variance more resistant to cross-section systematics

$$f_3(X_{\max};\lambda,\eta,\tau) = \int dX_1' \frac{1}{\lambda} e^{-\frac{X_1'}{\lambda}} \frac{1}{\sqrt{2\pi\tau}} e^{-\frac{1}{2}\left(\frac{X_{\max}-X_1'-\eta}{\tau}\right)^2}$$

$$\begin{array}{ll} \langle X_{\max} \rangle = \lambda + \eta & \lambda = \left(\frac{\theta}{2}\right)^{\frac{1}{3}} \\ \sigma^2 = \lambda^2 + \tau^2 & \eta = \langle X_{\max} \rangle - \lambda \\ \theta = 2\lambda^3 & \tau^2 = \sigma^2 - \lambda^2 \end{array} \\ & & & \\ & &$$

Constructing an analysis using only statistical estimators

Parameter <--> statistic relationship greatly facilitates data analysis

- mean, variance, and skewness have statistical estimators
 - e.g. unbiased estimator of population variance: $\sigma_e^2 = \frac{\sum x_i^2 (\sum x_i)^2 / n}{n-1}$
- parameters get statistical estimators!
 - no messy curve fitting
 - minimal bias
 - estimators can weight data to account for non-uniform exposure
 - get error estimates via resampling methods (jackknife/bootstrap)

Example: test estimators for bias

- choose 'truth' parameters
 - (lambda, eta, tau) = (45, 650, 25) g/cm2
- loop over trials:
 - sample from truth distribution to Monte Carlo a 'fake' data set
 - estimate (lambda, eta, tau) from fake data set
 - estimate errors on (lambda, eta, tau)
 - compare estimated value/error bar to truth value: $q = rac{p_{
 m truth} p_{
 m est}}{\delta p_{
 m est}}$

- Auger Xmax data
 - Observer v9r1
 - 2004 Jan 2013
 - data selection/anti-bias cuts follow 2010 Xmax PRL
 - no fitting, so no goodness-of-fit measure
 - Kolmogorov-Smirnov test
 - *P*-values indicate good fits to data at all energies

- lambda: consistent with proton-air interaction length below 18.7
 - above 18.7: break from trend?
- eta: slope appears to break between 18.4 and 18.7
 - also somewhat consistent with an unbroken linear trend
- tau yields no clear information
 - absorbs Xmax error systematics
- more data would help
- Xmax efficiency/acceptance study needed
 - current Xmax anti-bias data cuts attempt to unbias *mean Xmax only*

- lower-energy lambda is consistent with simple cross-section model
 - Block-Halzen 'black disk' proton (2012)
- also consistent with a single trend

- eta gives us an elongation rate
- broken trend in log*E* is a better fit

- what should 'standard Xmax analysis' really be?
- current analyses focus on precision measurement of Xmax mean, variance
- we are effectively promoting the use of:
 - 'X₁ corrected' mean
 - $'X_1$ corrected' variance
 - skewness

- continued collection of longitudinal profile data
 - Auger recently/currently releasing data with more statistics, better control of systematics
 - future projects (like JEM-EUSO) will provide more longitudinal profile data
- with additional statistics, analyses with higher moments will become viable
- we should at least add skewness to standard Xmax data analysis

- Next: facilitate adoption
 - Function has been used by others within collaboration
 - Numerical implementation can be difficult
- Various numerical tools/software
 - Code for fast/accurate evaluation
 - $f_3(x;\lambda \rightarrow 0,\eta,\tau) \rightarrow G(x;\eta,\tau)$
 - Delta function in integral
 - Fitting binned X_{max}
 - Least-square fits have systematic problems with tail/width
 - Log-likelihood fits yield results which closely match calculated parameters
 - Fast random sampling of f_3
 - Parameter error estimation via resampling methods
 - *f*₃ integral/CDF for easy application of the Kolmogorov-Smirnov test

- Provide Monte-Carlo trained composite distributions for mass mixture scenarios
 - Fit f_3 to Monte Carlo predictions
 - Scan over UHECR primaries with different mass, energy
 - Insert cross-section scaling parameter: $\lambda \mapsto \lambda/f_{\sigma}$
- Provide parameters as a function of $ln(A), log_{10}(E)$

- Provide $f_3(X_{\max};A,E,f_{\sigma})$
 - (And facilities to re-train parameters using your favorite Monte Carlo simulations)

- Most immediate problem:
 - f_3 shape parameter analysis outlined so far is ONLY VALID WHEN APPLIED TO PURE-COMPOSITION XMAX DISTRIBUTIONS
 - shape parameters of composite distribution LOSE PHYSICAL MEANING

• build composite distribution from superposition of underlying (pure-mass) distributions: $f_{\text{Tot}}(X_{\text{max}}) = \sum_{A} c_A f_3(X_{\text{max}}; \lambda_A, \eta_A, \tau_A)$

$$= \int d\alpha \ P(\alpha) f_3(X_{\max}; \lambda(\alpha), \eta(\alpha), \tau(\alpha)) \qquad \alpha \equiv \ln(A)$$

- Utilize MC-trained parameters for different masses
 - lambda ≈ polynomial in logA, logE
 - eta = polynomial in logA, logE
 - tau = polynomial in logA, logE
- Keep cross-section scaling factor f_{σ}

Next, compute total moments from Descriptive Parameters and mass distribution $P(\alpha)$

Statistical	Statistical
moments of	moments of
composite	underlying
distributions	distributions

$$\langle X \rangle_{\rm T} = \int d\alpha \, P(\alpha) \langle X \rangle_{\alpha}$$
$$\sigma_{X\,{\rm T}}^2 = \int d\alpha \, P(\alpha) \left(\sigma_{X\,\alpha}^2 + (\langle X \rangle_{\alpha} - \langle X \rangle_{\rm T})^2 \right)$$
$$\theta_{X\,{\rm T}} = \int d\alpha \, P(\alpha) \left(\theta_{X\,\alpha} + 3 \left(\langle X \rangle_{\alpha} - \langle X \rangle_{\rm T} \right) \sigma_{X\,\alpha}^2 + \left(\langle X \rangle_{\alpha} - \langle X \rangle_{\rm T} \right)^3 \right)$$

Result: if we knew the mass distribution $P(\alpha)$, we could calculate the **total** Xmax moments (which we can already observe, of course...)

$$\langle X \rangle_{\rm T} = \int d\alpha \, P(\alpha) [\lambda(\alpha) + \eta(\alpha)]$$
$$\sigma_{X\,{\rm T}}^2 = \int d\alpha \, P(\alpha) [\lambda^2(\alpha) + \eta^2(\alpha)]$$
$$\theta_{X\,{\rm T}} = \int d\alpha \, P(\alpha) [2\lambda^3(\alpha) + 3\left(\lambda(\alpha) + \eta(\alpha) - \langle X \rangle_{\rm T}\right) \sigma_{X\,{\rm T}}^2 + (\lambda(\alpha) + \eta(\alpha) - \langle X \rangle_{\rm T})^3]$$

- Moments of superposed Xmax distribution can be calculated from moments of underlying Xmax distribution
- Moments of underlying distributions can be written as polynomial functions of $\alpha = \ln(A)$
- under P(α)dα integral, α polynomial is converted to linear combinations of P(α) distribution moments!
- Example: mean of composite Xmax distribution:

$$\bar{X}_{\rm T} = \lambda_0 \left(1 - p_0 \langle \alpha \rangle + \frac{p_0^2}{2} \right) \left(1 - \frac{p_0^2}{2} \sigma_\alpha^2 \right) + (D_{01} + D_{11}\bar{\epsilon}) \langle \alpha \rangle + D_{02} \langle \alpha \rangle^2 + D_{02} \sigma_\alpha^2 + D_{k0} \bar{\epsilon}^k$$

• Linear transformation!

$$\begin{bmatrix} \langle \alpha \rangle \\ \sigma_{\alpha} \\ \theta_{\alpha} \end{bmatrix} = \begin{bmatrix} \tilde{Q} \\ \tilde{Q} \end{bmatrix} \begin{pmatrix} \begin{bmatrix} \langle X_{\max} \rangle \\ \sigma_{X_{\max}} \\ \theta_{X_{\max}} \end{bmatrix} - \begin{bmatrix} r_1 \\ r_2 \\ r_3 \end{bmatrix} \end{pmatrix}$$

- Q_{ij} and r_j are functions of f_σ , polynomial constants from MC-training, and powers of log *E*
- Compute moments of ln(A) while retaining the ability to semianalytically scale highest-energy cross-sections

Conclusion

- f_3 distribution
 - well-motivated
 - describes Xmax well
 - already widely recognized
 - facilitates real-world data analysis
- three-moment analysis is a natural extension to two-moment analysis
 - especially as more data are collected!
- parameter/moment relation can be useful in many ways

- future work
 - anti-bias cuts which target Xmax RMS, skewness
 - full extension to composition mixtures

also, small Python module to aid evaluation: http://physics.ohio-state.edu/~jcs/downloads/2013-07-01/f3_eval.tar.bz2

- Another problem: X_H adds significant skewness to Xmax (for medium, high mass showers)
- BUT f_{3} uses a normal distribution for $X_{H}!$
- log-normal distribution is better-motivated for cascades
 - unfortunately, log-normal moments are more complex functions of shape parameters

- Single shower: average second interaction depth <X₂> proportional to Xmax?
- Gamma distribution
 - Single/multiple particle species
- Average third interaction? Nth interaction? General description? Independent vs. exchangeable variables?

