UHE Cosmic Ray Charge ID Using Template Backtracking Simulations

Michael Sutherland (on behalf of Azadeh Keivani)
[part of AK Thesis Work]

Auger US analysis meeting
October 2013
Outline

• Develop and test a method to assign individual cosmic ray charge assuming a source and GMF model

• Generate rigidity \((R = E / Z)\) simulations from a specific source to determine arrival direction distributions

• Compare event reconstruction with individual rigidity arrival distributions

• Best match (overlap) corresponds to a charge value \(Z\)
 • Explicitly dependent on hypotheses that source is correct and GMF is an accurate representation

==

• Quick look at effect of a turbulent Kolmogorov random field on arrival directions
Simulation Parameters – GMF and Source

Assume Cen-A is a powerful sole source
(l, b) = (-50.5°, 19.4°)

- regular (coherent), striated random, turbulent random
- only consider regular here for Cen-A study
- regular+turbulent for last slide (no striated)
Rigidity Maps – Actual Directions

Simulations part of GF NASA grant

Backtrack HEALPix res 11 (51M points)
Rigidity Maps - Centroids

Obs. dir. in JF12-reg: srcs within 3° of CenA Center

- Latitude (°) range: -5 to 25
- Longitude (°) range: -100 to -40

- Data points labeled with different colors indicating different rigidity values (R in EV: 2.00, 2.24, 2.51, ..., 100)

- Cen A Center marked with a star
Charge Assignment Procedure

- The red star is an event with measured energy and direction with uncertainties

- Consider a 2D normalized Gaussian with mean \((l_g, b_g)\) and standard deviations \((\sigma_g, \sigma_g)\), for the event and each rigidity simulation
 - event \(\sigma\) corresponds to the measurement uncertainties (1°, 14% energy)
 - Simulation \(\sigma\) corresponds to the distribution's \(\sigma\)

- Calculate overlap value between event and individual simulations
 - Maximum value indicates most consistent rigidity \(\rightarrow Z\)
Charge Assignment – Sanity Checks and Uncertainties

• Select random event from simulations and assign “truth” charges

<table>
<thead>
<tr>
<th>Element</th>
<th>Z_{predict}</th>
<th>Counts (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>H</td>
<td>H</td>
<td>91</td>
</tr>
<tr>
<td>H</td>
<td>He</td>
<td>8</td>
</tr>
<tr>
<td>He</td>
<td>He</td>
<td>68</td>
</tr>
<tr>
<td>He</td>
<td>H</td>
<td>10</td>
</tr>
<tr>
<td>He</td>
<td>Li</td>
<td>17</td>
</tr>
<tr>
<td>He</td>
<td>Be</td>
<td>5</td>
</tr>
<tr>
<td>N</td>
<td>N</td>
<td>42</td>
</tr>
<tr>
<td>N</td>
<td>C</td>
<td>29</td>
</tr>
<tr>
<td>N</td>
<td>O</td>
<td>18</td>
</tr>
<tr>
<td>N</td>
<td>F</td>
<td>6</td>
</tr>
<tr>
<td>Fe</td>
<td>Fe</td>
<td>63</td>
</tr>
<tr>
<td>Fe</td>
<td>V</td>
<td>23</td>
</tr>
<tr>
<td>Fe</td>
<td>Cu</td>
<td>11</td>
</tr>
</tbody>
</table>

Error on Z Reconstruction vs. E: Helium, $p > 10\%$

Error on Z Reconstruction vs. E: Nitrogen, $p > 10\%$
Charge Assignment – Results from Data

- Herald until mid September 2013, latest reconstructions, $E > 2$ EeV
- This would be the charge if Cen-A origin and GMF model were true
Effect of Turbulent Field on Arrival Directions

• A. Keivani has developed a CRT module for implementing turbulent Kolmogorov spectra random fields