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MESSAGE

Ultimate science question: “what is the origin of high/ultra
high energy cosmic rays?”.

Perhaps the more important question is: “if high energy cosmic
rays are accelerated astrophysically, is it possible to know where
they came from?”

If one hopes to do cosmic ray astronomy or back track cosmic
rays to their sources it is imperative to constrain the impact of
the GMF.
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MOTIVATION

I Intermediate scale magnetic field parameters aren’t well
known

I Correlation length can have serious consequences for
deflection

I Addresses the feasibility of cosmic ray astronomy
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rL = E [EeV]
ZB [µG] kpc
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THE GALACTIC MAGNETIC FIELD (GMF)

It’s helpful to break up the GMF into three length
scales/regimes.

I Large scale or coherent or regular field. L > 1 kpc.
I Intermediate scale field. 1 < L < 1000(?) pc.
I Small/very small scale field. L� 1 pc.
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REGULAR GMF, L > 1 KPC

First point: field structure depends on galaxy morphology: i.e.
disk like or elliptical?

Current wisdom is that MW is a barred spiral. Given this, the
simplest models for fields in the disk are axisymmetric or
bisymmetric or a combination, resulting from a dynamo.
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MORE SOPHISTICATED REGULAR GMF MODELS

The limit of our knowledge is underscored by the abundance of
plausible models:

I Concentric circular ring (Rand and Kulkarni, 1989)
I Logarithmic spiral arms (Page et al., 2007)
I Bi-Toroidal or halo model (Sun et al., 2008, Prouza &

Smida 2003)

I JF12 model (Jannson & Farrar, 2012)
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(Jannson & Farrar, 2012)
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SOLAR SCALE FIELD, L� 1 PC

Turbulence of conducting material (plasmas/free e−) is “well
understood” on these scales: described by a power law
consistent with Kolmogorov turbulence (Armstrong et al.,
1995), although other indices also fit the data (Lomer et al. 2001
& Shisov et al. 2003).

I Stellar winds
I Protostellar jets
I SN shock fronts/ejecta
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INTERSTELLAR SCALE FIELD, 1 < L < 1000 PC

This is an interesting length regime that demands more study.
Not clear where the outer scale of turbulence is (80pc, 150pc,
300pc?).

Historical studies (e.g. Minter & Spangler, 1996) found 2-D
turbulence between 4 and 80 pc with

√
< B2 > ∼ 1 µG.

All these studies are based on sparse RM measurements for a
particular direction in the galaxy.
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Because cosmic ray sources are unknown, other observables
must be used to study the GMF.

RM = 0.81
∫ there

here
ne ~B · ~dl rad m−2

ne is a complex function, but one can use intricate and peer
reviewed models.

Ronnie was kind enough to share his RM data, which will be
very useful when we’re confident in our methodology
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Goal is to somehow relate the angular features of the RM sky
map to a physical length of the turbulent field “cell size” or
correlation length.

Computational approach:
I Produce a random field grid with known parameters

I Generate a simulated RM map using HAMMURABI and
JF12 coherent field

I Subtract JF12 predictions, leaving pure random field
I Compute angular power spectrum for the entire sky, or

sky patches
I Derive a connection between the power spectrum peak

and the input parameters
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Investigating different correlation lengths
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Current stage: determining the robustness of power spectrum
peaks
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Investigating different integration lengths
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PRELIMINARY RESULTS

I There is an obvious peak
I Not clear how this peak varies with CL

I Situation is further complicated by seeming dependence
on random field configuration

I Moreover, it seems the RM contribution from different line
of sight integration lengths varies
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FUTURE WORK

I Compute 2pt function
I Compute structure function, compare inferred CL to actual

CL

I Implement a JF12 scaled Kolmogorov random field using
CRT (Sutherland et al., 2010), repeat analysisX�

I Parametrize APS peak and relate it to CL

I Get better computational resources to explore higher
resolution field grids (L ∼ 8 pc)
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