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INTRODUCTION

MESSAGE

Ultimate science question: “what is the origin of high/ultra
high energy cosmic rays?”.

Perhaps the more important question is: “if high energy cosmic
rays are accelerated astrophysically, is it possible to know where
they came from?”

If one hopes to do cosmic ray astronomy or back track cosmic
rays to their sources it is imperative to constrain the impact of
the GMF.
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INTRODUCTION
°

MOTIVATION

» Intermediate scale magnetic field parameters aren’t well
known

» Correlation length can have serious consequences for
deflection

» Addresses the feasibility of cosmic ray astronomy
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Strong fields and heavy primaries
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BACKGROUND

THE GALACTIC MAGNETIC FIELD (GMF)

It’s helpful to break up the GMF into three length
scales/regimes.

» Large scale or coherent or regular field. L > 1 kpc.
» Intermediate scale field. 1 < L < 1000(?) pc.
» Small/very small scale field. L < 1 pc.
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BACKGROUND
0000

REGULAR GMF, L > 1 KPC

First point: field structure depends on galaxy morphology: i.e.
disk like or elliptical?

Current wisdom is that MW is a barred spiral. Given this, the
simplest models for fields in the disk are axisymmetric or
bisymmetric or a combination, resulting from a dynamo.

ASS+ARM e BSS
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Taken from Sun et al. A&A 477, 573. 2008
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BACKGROUND

0@00

MORE SOPHISTICATED REGULAR GMF MODELS

The limit of our knowledge is underscored by the abundance of
plausible models:

» Concentric circular ring (Rand and Kulkarni, 1989)

» Logarithmic spiral arms (Page et al., 2007)

» Bi-Toroidal or halo model (Sun et al., 2008, Prouza &
Smida 2003)
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BACKGROUND y 0DS YSIS RESULTS D FUTURE WO

MORE SOPHISTICATED REGULAR GMF MODELS

The limit of our knowledge is underscored by the abundance of
plausible models:

v

Concentric circular ring (Rand and Kulkarni, 1989)

v

Logarithmic spiral arms (Page et al., 2007)

Bi-Toroidal or halo model (Sun et al., 2008, Prouza &
Smida 2003)

’]Flz model (Jannson & Farrar, 2012) ‘

v
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(Jannson & Farrar, 2012)
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BACKGROUND y 0DS YSIS RESULTS D FUTURE WO

SOLAR SCALE FIELD, L < 1 PC

Turbulence of conducting material (plasmas/free ¢™) is “well
understood” on these scales: described by a power law
consistent with Kolmogorov turbulence (Armstrong et al.,
1995), although other indices also fit the data (Lomer et al. 2001
& Shisov et al. 2003).

» Stellar winds
» Protostellar jets
» SN shock fronts/ejecta
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D FUTURE WO

INTERSTELLAR SCALE FIELD, 1 < L < 1000 PC

This is an interesting length regime that demands more study.
Not clear where the outer scale of turbulence is (80pc, 150pc,
300pc?).

Historical studies (e.g. Minter & Spangler, 1996) found 2-D
turbulence between 4 and 80 pc with V< B> > ~ 1 uG.

All these studies are based on sparse RM measurements for a
particular direction in the galaxy.
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YUCTION UNI METHODS

Annotated Roadmap to the Milky Way

(artist's concept)

/ R. Hurt [SSC-Caltech] 5c2008-10b
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METHODS
®0

Because cosmic ray sources are unknown, other observables
must be used to study the GMF.

there Lo
RM = 0.81/ ne B -dl rad m—2

here

n, is a complex function, but one can use intricate and peer
reviewed models.

Ronnie was kind enough to share his RM data, which will be
very useful when we’re confident in our methodology

PIERRE
. (,ASEWESTERN RESERVE % AUGER

UNIVERSITY
ETba6 14 of 41 OBSERVATORY



METHODS

EGS RM Data k=4
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METHODS
°

Goal is to somehow relate the angular features of the RM sky
map to a physical length of the turbulent field “cell size” or
correlation length.

Computational approach:

» Produce a random field grid with known parameters
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METHODS
°

Goal is to somehow relate the angular features of the RM sky
map to a physical length of the turbulent field “cell size” or
correlation length.

Computational approach:
» Produce a random field grid with known parameters

» Generate a simulated RM map using HAMMURABI and
JF12 coherent field
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METHODS
°

Goal is to somehow relate the angular features of the RM sky
map to a physical length of the turbulent field “cell size” or
correlation length.

Computational approach:
» Produce a random field grid with known parameters

» Generate a simulated RM map using HAMMURABI and
JF12 coherent field

» Subtract JF12 predictions, leaving pure random field
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Goal is to somehow relate the angular features of the RM sky
map to a physical length of the turbulent field “cell size” or
correlation length.

Computational approach:
» Produce a random field grid with known parameters

» Generate a simulated RM map using HAMMURABI and
JF12 coherent field

» Subtract JF12 predictions, leaving pure random field

» Compute angular power spectrum for the entire sky, or
sky patches
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METHODS A RESULTS AND FUTURE WO

Goal is to somehow relate the angular features of the RM sky
map to a physical length of the turbulent field “cell size” or
correlation length.

Computational approach:
» Produce a random field grid with known parameters

» Generate a simulated RM map using HAMMURABI and
JF12 coherent field

» Subtract JF12 predictions, leaving pure random field

» Compute angular power spectrum for the entire sky, or
sky patches

» Derive a connection between the power spectrum peak
and the input parameters

PIERRE
. GASEWESTERN RESERVE AUGER
20 of 41 =5 OBSERVATORY



ANALYSIS

Investigating different correlation lengths

C;, =60 pc
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ANALYSIS

Investigating different correlation lengths

C;, =70 pc
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ANALYSIS

Investigating different correlation lengths

C;, =80 pc
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ANALYSIS

Investigating different correlation lengths

C;, =90 pc

Galactic
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ANALYSIS

Investigating different correlation lengths

C;, =100 pc
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ANALY

Investigating different correlation lengths

JF12 scaled KRF APS, Box dimensions L, =L, =6 kpc, L. =1 kpc
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ANALYSIS
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Current stage: determining the robustness of power spectrum

peaks
', =500 pc
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ANALYSIS
Current stage: determining the robustness of power spectrum
peaks
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ANALYSIS
00e00000000

Current stage: determining the robustness of power spectrum
peaks

APS for some C; (pc), Box dimensions L, =L, =15 kpc, L. =2 kpc, <B* >=6 4G, Kol. index a=5/3
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ANALYSIS
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Current stage: determining the robustness of power spectrum
peaks

C;, =500 pc, Realization 1

Galactic
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ANALYSIS
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Current stage: determining the robustness of power spectrum
peaks

C;, =500 pc, Realization 2

Galactic
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ANALYSIS
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Current stage: determining the robustness of power spectrum
peaks

C;, =500 pc, Realization 3
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Current stage: determining the robustness of power spectrum
peaks

APS realizations for C;, =500 (pc), Box dimensions L, =L, =15 kpc, L. =2 kpc, <B >=6 G, Kol. index a=5/3
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Investigating different integration lengths

€, =500 pc, Realization 0

Galactic
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Investigating different integration lengths

€, =500 pc, Realization 1
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Investigating different integration lengths

€, =500 pc, Realization 2
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ANALYSIS
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Investigating different integration lengths

APS realizations for C';, =500 (pc), Box dimensions L, =L, =15 kpc, L. =2 kpc, <B* >=6 G, Kol. index a=5/3
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RESULTS AND FUTURE WORK

@000

PRELIMINARY RESULTS

v

There is an obvious peak

v

Not clear how this peak varies with Cr,

v

Situation is further complicated by seeming dependence
on random field configuration

v

Moreover, it seems the RM contribution from different line
of sight integration lengths varies
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RESULTS AND FUTURE WORK

0@00

FUTURE WORK

» Compute 2pt function

» Compute structure function, compare inferred C;, to actual
CL

» Implement a JF12 scaled Kolmogorov random field using
CRT (Sutherland et al., 2010), repeat analysis ¥

» Parametrize APS peak and relate it to Cp.

» Get better computational resources to explore higher
resolution field grids (L ~ 8 pc)
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RESULTS AND FUTURE WORK
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RESULTS AND FUTURE WORK

[e]e]e] )

REFERENCES

Jannson & Farrar, AP] 757, 14, 2012

Rand and Kulkarni, APJ 343, 760, 1989

Page et al., APJS 170, 335, 2007

Sun et al., A&A, 477,573, 2008

Prouza & Smida. A&A, 410, 1, 2003
Armstrong et al., APJ, 443, 1, p.209-221, 1995
Shishov et al., A&A, 404, 2, 2003

Minter & Spangler, Ap], 458, 194, 1996

CASE WESTERN RESERVE
ET 826

S|UNIVERSITY

PIEI}RE
41 of 41 ) JAUGER



	Introduction
	a
	a1

	Background
	A
	B

	Methods
	A
	B
	C
	D

	Analysis
	E

	Results and future work
	A


