The turbulent galactic magnetic field Correlation lengths from RM maps

Sean Quinn (CWRU), Corbin Covault (CWRU), Glennys Farrar (NYU), Ronnie Jannson (NYU/Citigroup?), Deepak Khurana (NYU) US Analysis Meeting Cleveland, OH

October 11, 2013

INTRODUCTION	Background	Methods	Analysis	RESULTS AND FUTURE WORK
000	00000	00000	00000000000	
MESSAGE				

Ultimate science question: "what is the origin of high/ultra high energy cosmic rays?".

Perhaps the more important question is: "*if* high energy cosmic rays are accelerated astrophysically, *is it possible* to know where they came from?"

If one hopes to do cosmic ray astronomy or back track cosmic rays to their sources it is imperative to constrain the impact of the GMF.

INTRODUCTION				
•00	00000	00000	0000000000	0000

MOTIVATION

- Intermediate scale magnetic field parameters aren't well known
- Correlation length can have serious consequences for deflection
- ► Addresses the feasibility of cosmic ray astronomy

INTRODUCTION		
000		

INTRODUCTION				
000	00000	00000	0000000000	0000

	BACKGROUND			
000	0000	00000	0000000000	0000

THE GALACTIC MAGNETIC FIELD (GMF)

It's helpful to break up the GMF into three length scales/regimes.

- Large scale or coherent or regular field. L > 1 kpc.
- Intermediate scale field. 1 < L < 1000(?) pc.
- Small/very small scale field. $L \ll 1$ pc.

rroduction **Background** Methods Analysis Results . 0 00000 00000 0000 0000 0000

RESULTS AND FUTURE WORK 0000

Regular GMF, L > 1 Kpc

First point: field structure depends on galaxy morphology: i.e. disk like or elliptical?

Current wisdom is that MW is a barred spiral. Given this, the simplest models for fields in the disk are axisymmetric or bisymmetric or a combination, resulting from a dynamo.

More sophisticated regular GMF models

The limit of our knowledge is underscored by the abundance of plausible models:

- Concentric circular ring (Rand and Kulkarni, 1989)
- ► Logarithmic spiral arms (Page et al., 2007)
- Bi-Toroidal or halo model (Sun et al., 2008, Prouza & Smida 2003)

More sophisticated regular GMF models

The limit of our knowledge is underscored by the abundance of plausible models:

- Concentric circular ring (Rand and Kulkarni, 1989)
- ► Logarithmic spiral arms (Page et al., 2007)
- Bi-Toroidal or halo model (Sun et al., 2008, Prouza & Smida 2003)
- ► JF12 model (Jannson & Farrar, 2012)

(Jannson & Farrar, 2012)

 INTRODUCTION
 Background
 Methods
 Analysis
 Results and future work

 000
 0000
 0000000000
 0000

Solar scale field, $L \ll 1$ pc

Turbulence of conducting material (plasmas/free e^-) is "well understood" on these scales: described by a power law consistent with Kolmogorov turbulence (Armstrong et al., 1995), although other indices also fit the data (Lomer et al. 2001 & Shisov et al. 2003).

- Stellar winds
- Protostellar jets
- ► SN shock fronts/ejecta

 INTRODUCTION
 BACKGROUND
 METHODS
 ANALYSIS
 Results and future work

 000
 00000
 0000000000
 0000

Interstellar scale field, 1 < L < 1000 pc

This is an interesting length regime that demands more study. Not clear where the outer scale of turbulence is (80pc, 150pc, 300pc?).

Historical studies (e.g. Minter & Spangler, 1996) found 2-D turbulence between 4 and 80 pc with $\sqrt{\langle B^2 \rangle} \sim 1 \ \mu$ G.

All these studies are based on sparse RM measurements for a particular direction in the galaxy.

0000 00 00 0 00000000 0000	

Because cosmic ray sources are unknown, other observables must be used to study the GMF.

$$RM = 0.81 \int_{\text{here}}^{\text{there}} n_e \ \vec{B} \cdot \vec{dl} \qquad \text{rad } \mathrm{m}^{-2}$$

 n_e is a complex function, but one can use intricate and peer reviewed models.

Ronnie was kind enough to share his RM data, which will be very useful when we're confident in our methodology

		Methods		
000	00000	00000	0000000000	0000

		Methods		
000	00000	00000	0000000000	0000

Computational approach:

► Produce a random field grid with known parameters

INTRODUCTION BACK	ground Meth	ODS ANALYSI	IS RESULTS	
0000 0000	० ००००	000000	0000 0000	

- Produce a random field grid with known parameters
- Generate a simulated RM map using HAMMURABI and JF12 coherent field

INTRODUCTION BACK	ground Meth	ODS ANALYSI	IS RESULTS	
0000 0000	० ००००	000000	0000 0000	

- Produce a random field grid with known parameters
- Generate a simulated RM map using HAMMURABI and JF12 coherent field
- ► Subtract JF12 predictions, leaving pure random field

INTRODUCTION BACK	ground Meth	ODS ANALYSI	IS RESULTS	
0000 0000	० ००००	000000	0000 0000	

- Produce a random field grid with known parameters
- Generate a simulated RM map using HAMMURABI and JF12 coherent field
- ► Subtract JF12 predictions, leaving pure random field
- Compute angular power spectrum for the entire sky, or sky patches

INTRODUCTION BACK	ground Meth	ODS ANALYSI	IS RESULTS	
0000 0000	० ००००	000000	0000 0000	

- Produce a random field grid with known parameters
- Generate a simulated RM map using HAMMURABI and JF12 coherent field
- Subtract JF12 predictions, leaving pure random field
- Compute angular power spectrum for the entire sky, or sky patches
- Derive a connection between the power spectrum peak and the input parameters

	ANALYSIS	

	ANALYSIS	

	ANALYSIS	

	ANALYSIS	

	ANALYSIS	

			ANALYSIS	
000	00000	00000	00000000000	0000

			Analysis	
000 00	000 C	00000	0000000000	0000

			ANALYSIS	
000	00000	00000	0000000000	0000

INTRODUCTION	Background	Methods	Analysis	RESULTS AND FUTURE WORK	
000	00000	00000	0000000000		
Current stage: determining the robustness of power spectrum					

peaks

			ANALYSIS	
000	00000	00000	0000000000	0000

			ANALYSIS	
000	00000	00000	0000000000	0000

	ANALYSIS	
	0000000000	

INTRODUCTION	Background	Methods	Analysis	Results and future work 0000
000	00000	00000	00000000000	

APS realizations for $C_L = 500$ (pc), Box dimensions $L_x = L_y = 15$ kpc, $L_z = 2$ kpc, $< B^2 > =6 \ \mu$ G, Kol. index $\alpha = 5/3$

	ANALYSIS	
	00000000000	

Investigating different integration lengths

	ANALYSIS	
	000000000000	

Investigating different integration lengths

	ANALYSIS	
	00000000000	

Investigating different integration lengths

 INTRODUCTION
 BACKGROUND
 METHODS
 ANALYSIS
 Results and future work

 000
 00000
 0000000000
 0000

Investigating different integration lengths

APS realizations for $C_L = 500$ (pc), Box dimensions $L_x = L_y = 15$ kpc, $L_z = 2$ kpc, $\langle B^2 \rangle = 6 \mu$ G, Kol. index $\alpha = 5/3$

PRELIMINARY RESULTS

- There is an obvious peak
- ► Not clear how this peak varies with *C*_L
- Situation is further complicated by seeming dependence on random field configuration
- Moreover, it seems the RM contribution from different line of sight integration lengths varies

		Results and future work 0000

FUTURE WORK

- Compute 2pt function
- ▶ Compute structure function, compare inferred C_L to actual C_L
- ► Implement a JF12 scaled Kolmogorov random field using CRT (Sutherland et al., 2010), repeat analysis ☑
- ▶ Parametrize APS peak and relate it to *C*_L
- ► Get better computational resources to explore higher resolution field grids (L ~ 8 pc)

ACKNOWLEDGEMENTS

Thanks to Ronnie Jannson for EGS RM data, Deepak for minor assistance with integrating analytic JF12 model in HAMMURABI. Thanks to Tess Jaffe for assistance with HAMMURABI compilation.

Thanks for Michael Sutherland and Azadeh Keivani for providing a version of CRT that can produce KRF.

		RESULTS AND FUTURE WORK
		0000

REFERENCES

Jannson & Farrar, APJ 757, 14, 2012 Rand and Kulkarni, APJ 343, 760, 1989 Page et al., APJS 170, 335, 2007 Sun et al., A&A, 477, 573, 2008 Prouza & Smida. A&A, 410, 1, 2003 Armstrong et al., APJ, 443, 1, p.209-221, 1995 Shishov et al., A&A, 404, 2, 2003 Minter & Spangler, ApJ, 458, 194, 1996

